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Ar 

0.10 
0.25 
0.50 
0.75 
1.00 
i -25 
1-50 

0.10-1.25 
1.50 

Table 1. Gradients of planarity criteria calculated for the model structure 

Gradients  are normal ized  under lVFA.zl = 10 000. Here A, B, C are different a tomic  types (Fig. 2). 

A B C 

Criterion V~ Vy V z V~ Vy V: V x 

fv* -484 0 10 000 -242 0 -10 000 -121 
fv -1210 0 10 000 -605 0 -10000 -303 
fv -2424 0 10000 -1212 0 -10 000 -606 
fv -3630 0 10 000 -1815 0 -10 000 -909 
fv -4848 0 10 000 -2424 0 -10 000 -1212 
fv -6060 0 10 000 -3030 0 -10 000 -1515 
fv -7260 0 10 000 -3630 0 -10 000 -1815 

f t  0 0 10 000 0 0 -10 000 0 
f~ 0 0 0 0 0 0 0 

*fv = ;qX2,~3 [see (10), (15)]. 
t f = A  l [see (14)] 

Here normalization is under the condition IV ft. , ] = 10 000. 

~Ty ~7 z 

775 0 
1 938 0 
3 876 0 
5813 0 
7 752 0 
9 690 0 

11 625 0 

0 0 
i 0 000 0 

important property of an analytical expression in 
terms of atomic parameters. The exact gradient can 
also be easily calculated, which makes it possible to 
refine optimal plane parameters. This method of 
calculation of this criterion and its gradient may be 
included in any refinement program. 

The author thanks O. M. Liguinchenko for help 
with the English and the referees for essential 
improvements in the text. 
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Abstract 

A crystal of (Srl.sCal.5)Cus+~Oy has been studied by 
means of electron diffraction analysis and high-resol- 
ution transmission electron microscopy. A chimney 
ladder structure has been identified in the crystal, 
which is composed of two sets of incommensurate 

0108-7673  / 91 / 0 6 0 7 2 7 - 0 9 5 0 3 . 0 0  

orthorhombic sublattices L I and L 2 with a = al = a2 = 
1-28, b =  bl = b2 = 1.13, c1=0.390 and c2=0.275 nm. 
Diffraction streaks have been observed in electron 
diffraction patterns, i.e. there is a set of reflection 
planes parallel to a'b* related to L2. A structure 
model with initial phase disorder has been proposed 
to explain such diffraction streaks. A mathematical 

© 1991 International Union of Crystallography 



728 DIFFRACTION STREAKS FROM THE C H I M N E Y  LADDER STRUCTURE 

inference as well as an optical diffraction method 
have confirmed this model. Observed high-resolution 
images together with calculated ones gave a direct 
verification for the initial phase disorder. 

(Sr~.sCal.5)Cus+~Oy. The diffraction streaks in the 
electron diffraction patterns (EDPs) are studied in 
detail and some high-resolution electron-microscope 
images are shown. 

1. Introduction 

(Srl.sCal.5)Cus+8Oy is an impurity phase which often 
coexists with Bi-based superconductors (Horiuchi, 
Shoda, Wu, Nozaki & Tsutsumi, 1990). The electron 
diffraction analysis shows that the crystal is composed 
of two sets of orthorhombic sublattices, which are 
incommensurate along the c axis with a = 1.28, b = 
1.13, c1=0.390 and c2=0"275  rim. In other words, 
the crystal has a so-called chimney ladder structure 
(Wu & Horiuchi, 1991). 

Similar crystals have been studied by X-ray single- 
crystal diffraction. Kato, Takayama-Muromachi ,  
Kosuda & Uchida (1988) have studied M~oCu17029 
( M -  Bi, Sr, Ca), McCarron, Subramanian, 
Calabrese & Harlow (1988) have studied 
(Sr14+xCax)Cu2404~ (x = 0-8) and Siegrist, 
Schneemeyer, Sunshine, Waszczak & Roth (1988) 
have studied (A14_xA')Cu24041 (A=alkal ine-ear th  
metal, A'-- t r ivalent  metal). All of these studies 
showed that there are two sets of orthorhombic sublat- 
tices in the crystals with periods c~"-0.390 and c2-~ 
0.275 nm. It was recognized that the sublattice with 
c~ = 0.390 nm is related to a sheet of Cu203 with the 
Sr and Ca atoms, while the sublattice with c2-~ 
0.275 nm is composed of a CuO2 chain. The struc- 
tures of the crystals have been determined by Kato 
et al. (1988) using a superlattice c = 5 × 0 . 3 9 0 =  
7 x 0 . 2 7 5 n m  and by McCarron et al. (1988) and 
Siegrist et al. (1988) using a larger superlattice, c = 
7 x 0.390 -~ 10 x 0.275 nm. 

In the present work, a transmission electron micro- 
scope (TEM) is used to study the crystal structure of 

2. Experimental 

The sample was prepared by a solid-state reaction. 
Starting reagents, C a C O 3 ,  S rCO 3 and CuO, were 
mixed mechanically in the ratio C a : S r : C u =  
1.5:1.5:5,  shaped into a pellet and fired at 1123 K 
in air for 5 d with intermediate grinding. 

Two different methods were used to prepare thin 
specimens for TEM observation. The first one was to 
grind the sample pellet in an agate mortar. The small 
crystal fragments obtained were mounted on a micro- 
grid. In this case the crystal fragments were often 
arrayed with the (100) plane parallel to the microgrid 
plane. In the other case the sample pellet was polished 
mechanically down to a thickness of less than 50 i~m 
and then thinned in a Gatan 600N-DP ion-milling 
machine at an accelerating voltage of 6 kV. 

A JEM-2000EX TEM operated at an accelerating 
voltage of 200 kV was used to observe the specimens. 

3. Electron diffraction patterns (EDPs) 

Figs. l (a ) ,  (b), (c) and (d)  are EDPs taken along the 
[001], [010], [100] and [110] directions, respectively. 
From (b), (c) and (d) we find that there is an incom- 
mensurate modulation structure along the c* axis. 
There are some extra weak diffraction spots along the 
c* axis in (d).  The appearance of these extra spots 
is rather difficult to explain by either a displacive or 
a compositional modulation model. We introduce two 
sets of independent orthorhombic sublattices L1 and 
L 2 to describe this crystal. The sublattice parameters 
are a = a l = a 2 = 1 . 2 8 ,  b = b l = b 2 = l . 1 3 ,  c1=0.390 

(a) 

(b) 

(c) 

(d) 

Fig. 1. EDPs taken from an (Srt.sCaFs)Cus+~Oy 
crystal along (a) [001], (b) [010], (c) [100] 
and (d) [130] directions. Using four indices 
hk1112 we can index all of the diffraction spots. 
The streaks passing through hkl II 2 (l 2 # 0) are 
visible in (b), (c) and (d). 
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and c2 = 0.275 nm, respectively. In the EDPs, the third 
index is related to L~ and the fourth one is related 
to L 2. From the s tandpoint  of  kinemat ical  diffraction 
we get the diffraction pattern of  the [110] projection 
like Fig. 2(a) ;  the gray spots are from L1 and the 
small  full circles are from L2. Large full circles are 
common  to both sublattices. We then consider  
dynamica l  diffraction. Since the intensity of  spots 
from L~ is much  stronger than that from L 2 ,  the gray 
spots must  act as the source of double  diffraction. In 
Fig. 2(b) open circles indicate the double  diffraction 
spots while the crosses indicate the triple diffraction 
ones. Evidently,  Fig. 2(b) is in agreement  with Fig. 
1 (d).  That there are two sets of  sublattice in a crystal 
means  that the crystal has a ch imney  ladder  structure 
(Ye & Amelinckx,  1986). Using four indexes (hklll2) 
we can index all the EDPs in Fig. 1. 

• 0 • 0 • 
2200 1110 

o O  O o  
• 0 • ,,00 0 0~2 

0020 
o O  O o  

• 0 • C* 0 • 

• o 0 o ~ o + o  • o 4 0 0 + o  0 o • 

+ o @ 0 o ~ o + o  O @  o + 

• o 0 o ~ o + o  • o ~ o + o  0 o • 

+ o O 0  o ~ o + o  O0 o + 

• o 0 o - ~ o + o  • o ~ o + o  0 o ~ eb ) 

Fig. 2. A chimney ladder structure gives a diffraction pattern (a) 
under the assumption of kinematical diffraction. Under multiple 
diffraction, on the other hand, (b) is obtained. The electron 
beam is incident along [ 170] of (Sr 1.5Cal .5)C%+aOy. Small open 
circles indicate double diffraction and crosses indicate triple 
diffraction. (b) is similar to Fig. l(d). 

The diffraction spots for both of the sublattices 
satisfy the extinction rule of space group F m m m  (or 
F222 or F m m 2 )  in every EDP, except for Fig. 1(c) 
which is taken along [100], in which the forb idden 
spots 0110, 0101 etc. appear.  Since the extra spots are 
much  weaker than the normal  spots, they do not seem 
to be fundamenta l  ones and must have been produced 
by the imperfect ion of  the crystal. One reasonable  
explanat ion  for spots 0110 etc. from L 1 is that the 
distr ibution of  Sr and Ca atoms is partly ordered. 
This will be confirmed by the following observation. 

Figs. 3(a)  and (b) show the EDPs taken along 
[100] from the specimens which have been prepared 
by crushing and by an ion-mil l ing method,  respec- 
tively. The extra spots along the arrows in (a)  come 
from L 1 . They do not arise in (b). This means  that 
there is a structure change in the L1 lattice during ion 
milling. On the other hand,  the extra spots related to 
L 2 remain in (b). This means  that the origins of the 
anomalous  spots from L~ and L 2 a r e  different. In fact, 
diffraction streaks always pass through the spots from 
L 2. The occurrence of these streaks implies that the 
structure of  L 2 is disordered.  Accordingly,  we propose 
that the extra spots of  L 2 a r e  related to this disordered 
structure, which will be discussed in the next section. 

We may conclude according to the results of  EDP 
analysis that the structure of the present crystal 
(Srl .sCal.5)Cus+aOy is s imilar  to that of  MIoCU17029 
and (Sr14-xCax)Cu24041. In order to calculate the 
diffraction intensity and the s imulat ion image we have 
to use a superlattice model  with c = 5 x 0 . 2 9 0 - - -  
7 x0.275 nm, as has been proposed by Kato et al. 
(1988), in which the atom coordinates for each sublat- 
tice were determined by McCarron  et al. (1988). Using 
this model ,  it is not necessary to use the fourth index 
as we did in Figs. 1 and 2; for example,  the spot 0020 
in Figs. l (b ) ,  (c) and (d)  should then be labeled 

(a) (b) 

Fig. 3. EDPs taken along [110] from (a) a specimen 
prepared by crushing and (b) a specimen prepared 
by ion milling. The extra spots related to L] appear 
in (a) as indicated by arrows but disappear in (b). 
Those related to L2 still remain after ion irradiation 
as indicated by the arrow in (b). 
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0,0,10 and the weaker spot nearest to the center spot 
in Fig. l (d)  as 002. 

Fig. 4 shows the ratio of the calculated amplitude 
of the 002 diffraction spot to that of 0,0,10 as a 
function of crystal thickness. The ratios have a strong 
dependence on the incident direction of the electron 
beam. In the cases of [100] and [010] incidence, the 
ratios are always around 0.1%, while in the case of 
[ l i0]  incidence the ratios increase from 1 to 7%. 
According to the calculation, the intensity of the 002 
spot from [110] incidence should be much stronger 
than that from [100] or [010] incidence. Indeed, the 
002 spot, which is the weak one near the center spot 
indicated by an arrow in Fig. l (d) ,  can be seen clearly, 
while there is no spot at the corresponding position 
indicated by the arrow in (b) and (c). The calculation 
is in good agreement with observation. We may say 
that the superlattice model used here is a good 
approximation for describing the crystal structure. 

4. Diffraction streaks due to the initial phase disorder 
of the L2 sublattice 

In Figs. l(b), (c) and (d) we have found that there 
are always some streaks normal to the c* direction, 
which pass through only the spots (hkl~12) (12~0). 
Evidently, there is a group of planes parallel to the 
a 'b* plane in reciprocal space. 

Very similar diffraction patterns have been 
observed in some hollandite-type crystals (Cadee & 
Prodan, 1979; Suzuki, Tanaka, Ishigame, Suemoto, 
Shibata, Onoda & Fujiki, 1986; Zandbergen, 
Everstijn, Mijlhoff, Renes & ljdo, 1987; Wu, Li & 
Hashimoto, 1990). It has been proved that the crystal 
has a displacive modulation structure and the initial 
phase disorder (IPD) of the modulation waves pro- 
duces these streaks (Wu & Horiuchi, 1991; Wu, Fujiki, 
Ishigame & Horiuchi, 1991). 

The modulation mechanism of (Srj.sCat.5)Cus~ ~O,, 
is different from the hollandite-type crystals but the 
resemblance of the diffraction patterns suggests that 
the (Sr~.~Ca~.5)Cus~ ~O~, crystal may also have a struc- 
ture with initial phase disorder. In this case an initial 
phase disorder means that the origin of the sublattice 
L2 is disordered, i.e. there is no constant vector of 
three-dimensional translation for L2 in real space. 

In the crystal of (Sr~.~Ca~.5)Cus+~Ov the sheets of 
Cu203 together with Sr and Ca atoms form a sublattice 
L~, while the CuO2 chains form another sublattice 
L2, which is incommensurate to L~ along the c axis. 
In other words, if the origin of L~ is fixed, the z 
coordinate of the origin of L2 is always changed. That 
is to say, we can select the origin z coordinate of L2 
arbitrarily without any change for describing the 
fundamental crystal structure. This implies physically 
that the interaction between these two sublattices is 
very weak. On the other hand, every CuO2 chain 
independently completes the chemical bond so that 

the interaction between adjoining chains must be 
weak. In local areas the CuO2 chains start with the 
same phase, while in other areas the CuO2 chains 
possibly start with different phases. 

In the case of a displacive modulation structure, it 
has been proved that an I PD model can produce 
streaks in EDPs. Now the question is whether an IPD 
model with the chimney ladder structure produces 
such streaks. 

In the chimney ladder structure any atom can be 
classified in any of the sublattices. In a simple case, 
we assume that there are only two sublattices L~ and 
L2 with different periods c~ and c2. As a first step, 
we consider a crystal with two sets of perfect sublat- 
tices. Let us denote the jth-atom position in L~ by 
r i = xja + yjb + zjc~ and by r'j = x~a + y~b + z~c2 in L2. 
c~ -- qc2 in real space and c* = qc* in reciprocal space, 
where q is irrational. In the following discussion all 
parameters with a prime are related to L2. 

The structure factor F(uvw) can be expressed as 

F ( u v w ) = ~ , f j e x p 2 7 r i H . r j + ~ , f ; e x p 2 7 r i H . r ~  (1) 
J J 

where fj means the atomic scattering factor of the j th 
atom in L~ , f ;  the atomic scattering factor of the j th 
atom in L2, H = u a * + v b * + w c *  the vector in 
reciprocal space, u, v and w are real numbers. 

The number of unit cells along the directions a, b 
and c are NI, N2 and N3 for L~ and N'~, N~ and N~ 
for L2 respectively. We take N = N~ N2N3 and N ' =  
N'~N'N~. The diffraction intensity at the position 
(uvw) should be written as 

l(uvw)oC F(uvw) 
n . n  

= (1 /N)  2 ~,f, fj exp 27rill. ( r i - r ; )  
i,j 

x ~ exp 27rill. ( R . -  R,,) 
i i , l n  

+(1/N ' )  2 E l ; f ;  exp 2 ~ i n .  (r~- r~) 
i , j  

x ~ exp 2-trill. (R , , -  R,,,,) 
n ' , m '  

+ ( 1 / NN')2 Re / E f~f~ exp 2 t r i l l .  ( r , -  r~) 
t i . j  

x ~ exp 27rill. (R.,- R.,) / (2) 
J n , n  

where R. = n~a+ n2b+ n3cl and R.,,= n'la+ n~b+ 
n~c2 = n'~a+n'2b+n'3c~/q are translation vectors for 
L~ and L2, respectively, n=(n~,  n2,113) and n '=  

t ? ? ? (n~, n2, n~) with n~, n2 ,  n 3 ,  n i l ,  n 2 and n 3 integers. 
Re means the real part of the bracket. The right 
part of the equation consists of three terms; the first 
one is from L~, the second one from L2 and the third 
one from both of the sublattices. For each term, the 
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contr ibution from the first summat ion  gives a constant 
phase factor, which can be written as C~, C2 and C3, 
respectively. 

Substituting H and R, we have for each term 

T~ = ( C I / N  2) ~, exp 27ri[u(nl-  ml) 
n,nl  

+v(n2--  m2)+ w(n 3 -  m3)] 

= ( G / N  2) Y. exp27r iu(n l -ml )  
nl , m l  

x y~ exp 27riv(n2- m2) 
n 2 , m 2  

x ~ exp27r iw(na -m3)  
n 3 , m 3  

= C,6,h6~k6w; (3) 

T2=(C2 /N  '2) Y. expZTri[u(n'l-m'~) 
, , 

n .m  

+ v( n ' -  m'2) + w( n ; -  m'3)/ q] 

=(C2/ N '2) Y exp 21riu(n'~-rn'~) 
r l  I , m l  

x ~ e x p 2 r r i v ( n ' - m ' 2 )  
n2 ,rn2 

x ~ e x p 2 ~ ' i w ( n ~ -  m~)/q 
n3 ,m3  

= C 2 ~ u h 6 t ,  k t ~ w ( q l )  (4) 

T~=Z R e { ( C 3 / N ' N )  Z expZTri[u(n,-n' i)  
n ,n '  

+v( n2-  n'2) + w( n3-  n;/ q)] } 

= 2  R e / ( C 3 / N ' N )  ~ exp27riu(nl-n' l)  
I. • '11 , . ~  

x E exp 27fir(n2- n'2) 
n 2 , n ~  

exp 2 ~'iw( n3 - n~/ q ) ~ X E 
n~ .n~ J 

= 2 Re [ C3]6~h6~k&,,O (5) 

100 

10 

.,.a 

.1 

100 

.01 . . . . .  
0 1 2 3 4 5 6 

Thickness (nm) 

Fig. 4. Ratio of the calculated amplitude of the 002 diffraction 
spot to that of 0,0,10 as a function of the thickness for different 
incident orientations [100], [010] and Ill0]. A superlattice with 
c = 1.95 nm is used for the calculation. 

where h, k, ! are integers and 6 is a delta function. 
Accordingly,  the diffraction intensity is directly pro- 
portional to 

T 1 + T2+ T 3 ~-  C i t ~ u h t ~ v k t ~ w l  ~ -  C 2 t ~ u h t ~ v k t ~ w ( q l )  

+2 Re [ C 3 ] ( ~ u h t ~ t ,  k S w O .  (6) 

From this formula  we know that there are two kinds 
of diffraction spots in reciprocal space. The first is 
related to T~ and T3 with indexes hkl, while the second 
is related to 7"2 with indexes h,k, ql. The last index ql 
of  7"2 is irrational.  If we introduce a new basic vector 
c* = qc~* = qc*, every lattice point in reciprocal space 
can be expressed as hkl~12. It is also known from (6) 
that we can get diffraction spots hkllO (It # 0) from 
Ll, hkOl2 (12 # 0) from L2 and hkO0 from both LI and 
L2, while diffraction spots like hklll 2 (/l ,  12 # 0) do 
not appear  unless any mult iple  diffraction is excited. 
This means that under  the condit ion of kinematical  
approximat ion,  which is usually satisfied by X-ray 
diffraction (Jensen, Larsen, Maly & Coppens ,  1990), 
the atom positions in sublattice L~ (or L2) can be 
determined from diffraction spots hkl~O (11 # 0 )  [or 
hkOl2 ( /2#0) ]  and the x and y coordinates of  the 
origin of L2 relative to L~ can be determined from 
the spots hkO0. Owing to the incommensura t ion  
between L~ and L2 along the c axis it is meaningless  
to discuss the relative z coordinate.  

When the initial phase along the c direction is 
disordered in the sublattice L2, the structure of 
reciprocal space becomes variable. In this case the 
translat ion vector R,, is no longer constant but is 
written as 

R . ,=  n ' la+ n'2b+[n~+A(n'l, n~)]c2 

=n'~a+n'2b+[n;+A(n'~,n'2)]cl/q, (7) 

where A(n'~, n'2) is a random function between 0 
and 1. 

By substi tution of (7) into (4), T2 becomes 

T2=(C2/ N '2) ~. exp 27ri{u(n'l-m'l)+ v(n~-  m') 
, , 

n ,in 

! v v v ! + w(n3 - m3)/q + w[a (n , ,  n2) - A(rnt, rn'2)]/q} 

=(C2/ N '2) Y. exp 27ri{u(n'l-m't) 

+ v(n'2 - ml) + w[ A ( n',, n'2) -- A (rn;, m') ]/q} 

x 2 e x p 2 r r i w ( n ; - - m ; ) / q  
,4.,,,; 

= C2/ (N i S2)2t~wtqtl 

x Y. exp2rr i{u(n ' l -m;)+v(n '2-m'2)  

+w[A(n ' , ,  n'2)- A( m'l , m') ]/ q}. (8) 

Clearly, after introducing A, the summat ion  on n't 
and n;  no longer leads to a 6 function. There is no 
l imitation for indices u and v. Along the direction 
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c*, on the other hand,  7"2 is non-zero only when w = ql. 
This means that there is a set of  reflection planes in 
reciprocal space which is parallel  to a 'b*  and are 
separated from each other with spacing nqc* = no* 
(n = integer). When w = 0 (9) becomes (4) and only 
sharp diffraction spots hkO0 appear.  

Substituting (7) into (5), we have 

T 3 = 2 Re { [ C3t~wo / ( N~ N2)  2] 

x ~ exp2"rri[u(n ' l -m~)+v(n~-m~) 
11',1111' 

-wA(m'~, m'2)/ q]} . (9) 

Similar to (8) the whole formula  becomes (5) when 
w = 0. When w ~ 0, however, 7"3 becomes zero owing 
to the effect of  the 8 function. In other words, the 
contribution of 7"3 remains unchanged after changing 
l ~ n '  • 

We can conclude that when the initial phase of  L2 
is disordered the change in reciprocal space is 
expressed only by 7"2; diffraction spots hkl~O are 

always sharp, while the reflection planes (Ut;0/2) 

(/2 ~ 0) appear  instead of  sharp spots hkOl:. 
The discussion here is based on the assumption 

that all the L2 sublattices are completely disordered, 
namely,  A(n'~, n~) always changes. In this case, 7"2 
gives only diffraction planes but no spots at all when 
1 2 ~ 0 .  

However, the result will be changed if  the initial 
phase of L2 is partially disordered,  i.e. some of the 
L2 sublattice rows start with the same phase while 
others are disordered. In this case, 7"2 should be 
separated into two parts. One part is related to the 
ordered sublattice rows, which causes sharp diffrac- 
tion spots hkOl2, while another  part is related to the 
rows with the initial phase disorder, which causes a 
set of  reflection planes (uvOl2) ( /2~0) .  Diffraction 
spots hkOl2 always locate on the reflection planes 
(uvOl2). 

These discussions can be examined  easily by means 
of  optical diffraction. Fig. 5(a)  shows a perfect two- 
d imensional  ch imney ladder  structure with b~/b2 = 
2 I/2. Fig. 5(b) is an optical diffraction pattern (ODP) 
corresponding to (a).  We can find two sets of  
independent  spots hk~O and hOk2. Since no mult iple 
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Fig. 5. (a) A two-dimensional model for 
a perfect chimney ladder structure with 
bt/b2=2 !/2. (b) An ODP correspond- 
ing to (a). Since no multiple diffraction 
occurs, there are no spots hk tk 2 
(kt,  k2~ 0). (c) A model with the initial 
phase disorder in about one third of L 2. 
(d )  An ODP corresponding to (c). An 
arrow is drawn to indicate the spot from 
L2. Not only spots but also streaks are 
seen along the line (u0k2) (k 2 ~ 0). (e) 
A model with complete initial phase 
disorder in L 2. ( f )  An ODP corre- 
sponding to (e). No spots but streaks 
are seen along the line (u0k2) (k 2 ~ 0). 
The variation from (b) to ( f )  can be 
seen clearly along the direction indi- 
cated by the arrows in (b). 
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diffraction occurs, there are n o  hklk2 ( k , ,  k 2 # 0) spots 
at all. When an initial partial  phase disorder is intro- 
duced in Fig. 5(c), where one third of the rows start 
with different z coordinates,  the streaks (uOk2)  

( k 2 # 0 )  appear  in the corresponding O D P  (d) 
together with the diffraction spots hOk2.  When the 
initial phase is disordered completely as shown in 
Fig. 5(e), only streaks (uOk2)  occur without any spots 
in the corresponding O D P  ( f ) .  The ODPs are in good 
agreement with the mathemat ica l  inference as well 
as the EDPs. Compar ing  Figs. 1 and 5 we can con- 
clude that in the (Sr~.sCal.5)Cus+aOy crystal the initial 
phase of CuO2 chains is partially disordered. 

5. Observed and calculated high-resolution images 

Fig. 6(a)  is a projection of  the crystal structure along 
the [001] direction. The bold line indicates the unit 
cell of  L2, while the dashed  line indicates the unit 
cell of  L~. The shift of  the origin in L2 relative to that 
in L~ is x --- 0.75 and y = 0.75 as proposed by McCar- 
ron et al. (1988). Fig. 6(b) is a projection of the crystal 
lattice along the a axis. The full dots indicate the 
sublattice points of  L~ and the open circles the sublat- 
tice points of  L2. Owing to incommensura t ion  
between L1 and L2 no superper iod exists. 

Figs. 7(a)  and (b) are the high-resolution images 
taken along [001] together with the corresponding 
s imulat ion images. In order to calculate the images, 
a superlattice with c = 1.95 nm, i.e. c = 5 x c I - 7  x c2, 

is used. In (a) a projection of  the structure along 
[001] is inserted. The calculat ions show that image 
(a)  is taken with a thickness of 1.95 nm at an under- 
focus of 50 nm and image (b) is with a thickness of 
4.87 nm at 35 nm underfocus.  In (a) the white dots 
correspond to the positions of  Sr or Ca and Cu atoms. 
The observed and calculated images are in good 
agreement. 

There is, however, no informat ion about the modu- 
lation structure from the images taken along the [001 ] 
direction. The modula t ion  structure can be observed 
when the electron beam is incident  normal  to the c 
axis. According to the calculat ion shown in Fig. 4, 
where the electron beam is incident along [110], the 
weak spots related to the modula t ion  structure are 
much stronger than that from the [100] or [010] 
incidence. This means that the [ 1 i0]  incidence is the 
best orientation to observe the modula t ion  structure. 

Fig. 8(a)  is a TEM image taken along [110], which 
shows the modula t ion  fringes clearly. The spacing 
between adjoining fringes, marked by large arrows 
in an enlarged image (b), is equal to  1 / [ c*  - -c ' l ,  which 
is incommensura te  with either el or c2. The spacing 
of the modula t ion  is not an integral mult iple of  the 
subspacing indicated by the smaller  arrows. Even if  
we use a longer period, which is obtained as an 
integral mult iple  of  the modula t ion  spacing, there is 
no integer relat ionship between the modula t ion  

spacing and the subspacing.  It should be noticed that 
the fringes in Fig. 8(a)  are not on a straight line, but 
shift prominent ly  from the right to the left. At a 
constant defocus there are two possible factors to 
make the fringe shift. One is a change in crystal 
thickness and the other is a change in atom positions. 

Using the superlatt ice ment ioned  above, a series 
of  s imulated images along [110] are calculated with 
an underfocus of 25 nm as the thickness increases 
(Fig. 9). The thickness of  Fig. 9(a)  is 3.4, (b) 4.3, 
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Fig. 6. (a) The projection of atoms in an (Srl.sCa~.5)Cus+~Oy 
crystal along [001]. The dashed line shows the sublattice L t and 
the solid line the sublattice L2. (b) The projection of the crystal 
lattice along the a axis. The filled and open circles indicate the 
sublattice points of L t and L2, respectively. The dashed line 
shows the unit cell of L t and the solid line that of L 2. Both 
sublattices simultaneously start at level 0 as shown in the figure. 
They do not coincide with each other at all along the c direction. 
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(a) (b) 

Fig. 7. The high-resolution images taken 
along (a) [001i with a thickness of about 
2 nm at underfocus of 50 nm and (b) 
with a thickness of about 5 nm at under- 
focus of 35nm. The corresponding 
simulated images are inserted in (a) and 
(b) and a structure projection is also 
inserted in (a). 

(a) (b) 

Fig. 8. (a) High-resolution image taken along 
[ l i0]  and (b) an enlargement from part of 
(a). The modulation fringes shift from the 
right part to the left part in (a). In (b) the 
larger arrows indicate the modulation 
spacing while the smaller arrows indicate 
the subspacing. 

(a) (b) (c) (d) 

Fig. 9. A series of high-resolution images 
simulated at the underfocus of 25 nm with 
thickness (a) 3.4, (b) 4.3, (c) 5.1 and (d) 
6.0 nm along [110]. The arrows indicate the 
modulation fringes. Obviously, there is no 
fringe shift as the thickness increases. 
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(a) (b) (c) 

Fig, 10. A series of high-resolution images simulated along 
[110] at an underfocus of 25 nm with a thickness of 
5" 1 nm. The origin of L 2 is changed relative to that of L~ 
with a step of 0.585/~ from (a) to (c) along the c direction. 
The fringe shift indicated by arrows is very large in spite 
of the small translation of the origin. 

(c) 5.1 and (d) 6.0nm. Though the image does not 
match the observed ones very well mainly due to the 
assumption of a commensurate superlattice, the 
modulation fringes can be seen clearly along the 
direction indicated by the arrows. As a result we 
notice that thickness variation causes almost no fringe 
shift in the images. 

When the z coordinates of CuO2 chains (L2 sublat- 
tice) are changed relative to the Cu203 sheet (LI 
sublattice), we get the simulation images in Fig. 10 
for the thickness of 5.1 nm at the underfocus of 25 nm. 
Though the translation of the origin of CuO2 chains 
is very slight (less than 0.6 ]~) along the c direction, 
the fringe shift is very marked. 

Comparing Figs. 8 and 10, we can conclude that 
the fringe shift is due to the translation of the origin 
of CuO2 chains. That is to say, the CuO2 chains start 
with different z coordinate from area to area. In other 
words, the initial phase of the sublattice L 2 is partially 
disordered. This result together with the diffraction 
analysis in the preceding section gives strong support 
to the structure model with IPD. 

6. Summary 

The analysis on EDPs shows that there are two sets 
of sublattices in a crystal (Sr~.sCal.5)Cus÷~Oy, which 
are incommensurate along the c axis with parameters 
c~ = 0.390 and c2 = 0.275 nm. The sublattice L~ is com- 
posed of Cu203 sheets parallel to bc and L 2 is com- 
posed of CuO2 chains along the c axis. In EDPs there 
are some streaks always passing through the spots 
related to L 2. This means that there is a set of reflec- 
tion planes in reciprocal space. These planes come 
from the partial disorder in the initial phase of L 2. 

It has been proved by a mathematical inference as 

well as an optical diffraction method that the initial 
phase disorder (IPD) model in the chimney ladder 
structure can cause such a set of reflection planes in 
reciprocal space. As more evidence for the IPD model 
we have observed the shift of modulation fringes in 
high-resolution TEM images. 
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