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Table 1. Gradients of planarity criteria calculated for the model structure

Gradients are normalized under |VF, .| =10 000. Here A, B, C are different atomic types (Fig. 2).

A B C
Ar Criterion v, v oY A A 2
0-10 fv* —484 0 10 000 -242 0 -10 000 -121 775 0
0-25 fv -1210 0 10 000 -605 0 —10 000 -303 1938 0
0-50 fv —2424 0 10 000 -1212 0 -10 000 -606 3876 0
0-75 fv —-3630 0 10 000 -1815 0 —10 000 -909 5813 0
1-:00 fv —4848 0 10 000 —2424 0 -10 000 -1212 71752 0
1-25 v —6060 0 10 000 -3030 0 —10 000 -1515 9690 0
1-50 fv -7260 0 10 000 -3630 0 -10 000 -1815 11625 0
0-10-1-25 ft 0 0 10000 0 0 —10 000 0 0 0

1-50 /i 0 0 0 0 0 0 0 10 000 0

*fv = A AaA; [see (10), (15))

tf=A, [see (14)]

+ Here normalization is under the condition |Vf.- | = 10 000.

important property of an analytical expression in
terms of atomic parameters. The exact gradient can
also be easily calculated, which makes it possible to
refine optimal plane parameters. This method of
calculation of this criterion and its gradient may be
included in any refinement program.

The author thanks O. M. Liguinchenko for help
with the English and the referees for essential
improvements in the text.
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Diffraction Streaks from the Chimney Ladder Structure in an (Sr,sCa,.s)Cus, s0, Crystal

By Xi1A0-JING Wu, Eul TAKAYAMA-MUROMACHI, SHIGERU SUEHARA AND SHIGEO HORIUCHI

National Institute for Research in Inorganic Materials, Tsukuba, Ibaraki, 305, Japan

(Received 17 January 1991; accepted 4 June 1991)

Abstract

A crystal of (Sr,.sCa,.5)Cus, 50, has been studied by
means of electron diffraction analysis and high-resol-
ution transmission electron microscopy. A chimney
ladder structure has been identified in the crystal,
which is composed of two sets of incommensurate

0108-7673/91/060727-09%$03.00

orthorhombic sublattices L, and L, witha=a,=a,=
1-28, b=b,=b,=1:13, ¢;=0-390 and ¢, =0-275 nm.
Diffraction streaks have been observed in electron
diffraction patterns, i.e. there is a set of reflection
planes parallel to a*b* related to L,. A structure
model with initial phase disorder has been proposed
to explain such diffraction streaks. A mathematical
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0,0,10 and the weaker spot nearest to the center spot
in Fig. 1(d) as 002.

Fig. 4 shows the ratio of the calculated amplitude
of the 002 diffraction spot to that of 0,0,10 as a
function of crystal thickness. The ratios have a strong
dependence on the incident direction of the electron
beam. In the cases of [100] and [010] incidence, the
ratios are always around 0-1%, while in the case of
[110] incidence the ratios increase from 1 to 7%.
According to the calculation, the intensity of the 002
spot from [110] incidence should be much stronger
than that from [100] or [010] incidence. Indeed, the
002 spot, which is the weak one near the center spot
indicated by an arrow in Fig. 1(d ), can be seen clearly,
while there is no spot at the corresponding position
indicated by the arrow in (b) and (c). The calculation
is in good agreement with observation. We may say
that the superlattice model used here is a good
approximation for describing the crystal structure.

4. Diffraction streaks due to the initial phase disorder
of the L, sublattice

In Figs. 1(b), (¢) and (d) we have found that there
are always some streaks normal to the ¢* direction,
which pass through only the spots (hkl, .} (I, #0).
Evidently, there is a group of planes parallel to the
a*b* plane in reciprocal space.

Very similar diffraction patterns have been
observed in some hollandite-type crystals (Cadee &
Prodan, 1979; Suzuki, Tanaka, Ishigame, Suemoto,
Shibata, Onoda & Fujiki, 1986; Zandbergen,
Everstijn, Mijlhoff, Renes & Ijdo, 1987; Wu, Li &
Hashimoto, 1990). It has been proved that the crystal
has a displacive modulation structure and the initial
phase disorder (IPD) of the modulation waves pro-
duces these streaks (Wu & Horiuchi, 1991; Wu, Fujiki,
Ishigame & Horiuchi, 1991).

The modulation mechanism of (Sr,.sCa,.s)Cus, 50,
is different from the hollandite-type crystals but the
resemblance of the diffraction patterns suggests that
the (Sr,.sCa,.5)Cus, 50, crystal may also have a struc-
ture with initial phase disorder. In this case an initial
phase disorder means that the origin of the sublattice
L, is disordered, i.e. there is no constant vector of
three-dimensional translation for L, in real space.

In the crystal of (Sr,.sCa,.5)Cus,;0, the sheets of
Cu,0;together with Srand Ca atoms form a sublattice
L,, while the CuO, chains form another sublattice
L,, which is incommensurate to L, along the ¢ axis.
In other words, if the origin of L, is fixed, the z
coordinate of the origin of L, is always changed. That
is to say, we can select the origin z coordinate of L,
arbitrarily without any change for describing the
fundamental crystal structure. This implies physically
that the interaction between these two sublattices is
very weak. On the other hand, every CuO, chain
independently completes the chemical bond so that
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the interaction between adjoining chains must be
weak. In local areas the CuO, chains start with the
same phase, while in other areas the CuO, chains
possibly start with different phases.

In the case of a displacive modulation structure, it
has been proved that an IPD model can produce
streaks in EDPs. Now the question is whether an IPD
model with the chimney ladder structure produces
such streaks.

In the chimney ladder structure any atom can be
classified in any of the sublattices. In a simple case,
we assume that there are only two sublattices L, and
L, with different periods ¢, and c¢,. As a first step,
we consider a crystal with two sets of perfect sublat-
tices. Let us denote the jth-atom position in L, by
r,=xat+yb+zec, and by r';=xja+yb+zjc; in L,.
¢, = gc, in real space and ¢¥ = gc7 in reciprocal space,
where g is irrational. In the following discussion all
parameters with a prime are related to L,.

The structure factor F(uvw) can be expressed as

F(uow)=% fiexp2miH.r,+Y fiexp2aiH.r; (1)
J J

where f; means the atomic scattering factor of the jth
atom in L,, f; the atomic scattering factor of the jth
atom in L,, H=ua*+ovb*+wc¥ the vector in
reciprocal space, u, v and w are real numbers.

The number of unit cells along the directions a, b
and c are N;, N, and N; for L, and N, N} and N}
for L, respectively. We take N = N,N>-N; and N'=
N{N;N}. The diffraction intensity at the position
(uvw) should be written as
2

N, N’
I{(uvw) Z’ F(uvw)

:(I/N)ZZf,fj exp2miH. (r;—-r;)
x Y exp2miH.(R,—R,)
+(1/N’)2Zf,-’f,’ exp2miH. (r;—r))

X Z exp 27iH. (R, —R,)
+(1/NN')2 Re {Zﬁf,’ exp2miH. (r;—r})

X 3 exp 2m'H.(R,,—R.,A)} (2)

where R,=n,a+nb+ns;c;, and R, =nja+nib+
nic,=nja+n3;b+ nic,/q are translation vectors for
L, and L,, respectively. n=(n,, n,, n;) and n'=
(ny, ny, ny) with n,, n,, ny, ny, nj and n} integers.
Re means the real part of the bracket. The right
part of the equation consists of three terms; the first
one is from L,, the second one from L, and the third
one from both of the sublattices. For each term, the
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contribution from the first summation gives a constant
phase factor, which can be written as C,, C, and C;,
respectively.

Substituting H and R, we have for each term

T = (CI/NZ) Y exp 2milu(n, —m;)

+o(ny— my)+ w(ny—ms)]

=(C,/N? ¥ exp2miu(n,—m,)

ny,m

X Y exp2miv(n,—m,)

nz,m;

X Y exp2miw(ny;—my)

ny,ms

= Clsuhsukswl (3)
T,=(Cy/N"™) ¥ exp 2milu(n}—m})

+ov(n5—mj)+w(nj—m})/q]
=(Cy/N'?) Y exp2miu(n;—m))

ny,m;

X Y exp2wiv(ny—m})

nx,my

X Y exp2mwiw(ny—m})/q

= C25ul180k5w(ql) (4)

T,=2 Re{(CJ/N’N) Z’exp27ri[u(n,—n{)
to(n,—nj)+ W(nz—n_'z/q)]}

=2 Re{(Cz/N’N) Y exp2miu(n,—ny)

ng.ny

X Y exp2wmiv(n,—nb)

X Y exp2miw(n;— ",’:/Q)}

"\.'7.4
=2 Re [CJ]Suh‘SukawO (5)
100
10F
§ 110
i
3 100
1F W‘W
010
.01

0 1 2 3 4 5 6
Thickness (nm)

Fig. 4. Ratio of the calculated amplitude of the 002 diffraction
spot to that of 0,0,10 as a function of the thickness for different
incident orientations [100], [010] and [110]. A superlattice with
¢=1-95nm is used for the calculation.
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where h, k, | are integers and & is a delta function.
Accordingly, the diffraction intensity is directly pro-
portional to

T\ + T,+ Ty=C,8,,8,4 8+ Cy8.4, 8,480 (q1)
+2Re [CJ]auhﬁukﬁw(]- (6)

From this formula we know that there are two kinds
of diffraction spots in reciprocal space. The first is
related to T, and T with indexes hkl, while the second
is related to T, with indexes h,k,gl. The last index g/
of T is irrational. If we introduce a new basic vector
¢ = qcf = qc*, every lattice point in reciprocal space
can be expressed as hkl,. It is also known from (6)
that we can get diffraction spots hkl,0 (I, #0) from
L,, hkOl, (I, #0) from L, and hk0O from both L, and
L,, while diffraction spots like hkl\l, (I,,1,#0) do
not appear unless any multiple diffraction is excited.
This means that under the condition of kinematical
approximation, which is usually satisfied by X-ray
diffraction (Jensen, Larsen, Maly & Coppens, 1990),
the atom positions in sublattice L, (or L,) can be
determined from diffraction spots hk/,0 (I, #0) [or
hkOl, (I,#0)] and the x and y coordinates of the
origin of L, relative to L, can be determined from
the spots hk00. Owing to the incommensuration
between L, and L, along the ¢ axis it is meaningless
to discuss the relative z coordinate.

When the initial phase along the ¢ direction is
disordered in the sublattice L,, the structure of
reciprocal space becomes variable. In this case the
translation vector R, is no longer constant but is
written as

R, =ma+n3b+[n;+A(ny, ny)le,
=ma+nsb+[n;+A(n}, n3)le,/q, (7)

where A(nj, n5) is a random function between 0
and 1.
By substitution of (7) into (4), T, becomes

T,=(Cy/N") ¥ exp2mi{u(n]—m})+v(ny—mj)

+w(ny—m3)/q+w[A(ny, n3)—A(m}, my)]/q}
=(C2/N’2), Y exp2ai{u(ni—m))

+o(n;—m3)+w[A(n, n3) = A(m;, m3)]/ q}

X Y exp2miw(ni—m})/q

~
n3,m;

= Cy/{N, N2)26w(ql)

X Y exp 2mi{u(n;—m})+v(ny—m})
+w[d(ny, ny)—A4(m}, my)1/q}. (8)

Clearly, after introducing 4, the summation on n,
and nj no longer leads to a 8 function. There is no
limitation for indices u and v». Along the direction
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c*, on the other hand, T; is non-zero only when w = gl.
This means that there is a set of reflection planes in
reciprocal space which is parallel to a*b* and are
separated from each other with spacing ngef = nc¥
(n=integer). When w=0 (9) becomes (4) and only
sharp diffraction spots hk00 appear.

Substituting (7) into (5), we have

T,=2Re {[(]5.....,*‘! NiN,)’]

x ¥ exp2milu(n)—m})+v(ni—mb)

n,m

—w._‘.[m;,m}],’q]}. (9)

Similar to (8) the whole formula becomes (5) when
w=0. When w # 0, however, T; becomes zero owing
to the effect of the & function. In other words, the
contribution of T; remains unchanged after changing
R,.

We can conclude that when the initial phase of L,
is disordered the change in reciprocal space is
expressed only by T,; diffraction spots hkl,0 are
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always sharp, while the reflection planes (uv0l,)
(I, #0) appear instead of sharp spots hk0l,.

The discussion here is based on the assumption
that all the L, sublattices are completely disordered,
namely, 4(n}, n3) always changes. In this case, T,
gives only diffraction planes but no spots at all when
I, #0.

However, the result will be changed if the initial
phase of L, is partially disordered, i.e. some of the
L, sublattice rows start with the same phase while
others are disordered. In this case, T, should be
separated into two parts. One part is related to the
ordered sublattice rows, which causes sharp diffrac-
tion spots hk0l,, while another part is related to the
rows with the initial phase disorder, which causes a
set of reflection planes (uv0l;) (I,#0). Diffraction
spots hkOl, always locate on the reflection planes
(uv0l,).

These discussions can be examined easily by means
of optical diffraction. Fig. 5(a) shows a perfect two-
dimensional chimney ladder structure with b,/b,=
2'%. Fig. 5(b) is an optical diffraction pattern (ODP)
corresponding to (a). We can find two sets of
independent spots hk,0 and hOk,. Since no multiple

Fig. 5. (a) A two-dimensional model for
a perfect chimney ladder structure with
b,/by=2"'2_(b) An ODP correspond-
ing to (a). Since no multiple diffraction
occurs, there are no spots hkk,
(ky, k; #0). (¢) A model with the initial
phase disorder in about one third of L,.
(d) An ODP corresponding to (¢). An
arrow is drawn to indicate the spot from
L,. Not only spots but also streaks are
seen along the line (u0k;) (k,#0). (e)
A model with complete initial phase
disorder in L,. (f) An ODP corre-
sponding to (e). No spots but streaks
are seen along the line (u0k,) (k;#0).
The variation from (b) to (f) can be
seen clearly along the direction indi-
cated by the arrows in (b).

i
1
¢
:
!
i
i
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diffraction occurs, there are no hk, k, (k,, k, # 0) spots
at all. When an initial partial phase disorder is intro-
duced in Fig. 5(c), where one third of the rows start
with different z coordinates, the streaks (u0k,)
(k,#0) appear in the corresponding ODP (d)
together with the diffraction spots hOk,. When the
initial phase is disordered completely as shown in
Fig. 5(e), only streaks (10k,) occur without any spots
in the corresponding ODP ( f). The ODPs are in good
agreement with the mathematical inference as well
as the EDPs. Comparing Figs. 1 and 5 we can con-
clude that in the (Sr,.sCa,.5)Cus, O, crystal the initial
phase of CuO, chains is partially disordered.

5. Observed and calculated high-resolution images

Fig. 6(a) is a projection of the crystal structure along
the [001] direction. The bold line indicates the unit
cell of L,, while the dashed line indicates the unit
cell of L,. The shift of the origin in L, relative to that
in L, is x =0-75 and y =0-75 as proposed by McCar-
ron et al. (1988). Fig. 6(b) is a projection of the crystal
lattice along the a axis. The full dots indicate the
sublattice points of L, and the open circles the sublat-
tice points of L,. Owing to incommensuration
between L, and L, no superperiod exists.

Figs. 7(a) and (b) are the high-resolution images
taken along [001] together with the corresponding
simulation images. In order to calculate the images,
a superlattice with c=1-95nm, ie. c=5x¢,~7X¢,,
is used. In (a) a projection of the structure along
[001] is inserted. The calculations show that image
(a) is taken with a thickness of 1:95 nm at an under-
focus of 50 nm and image (b) is with a thickness of
4-87 nm at 35 nm underfocus. In (a) the white dots
correspond to the positions of Sr or Ca and Cu atoms.
The observed and calculated images are in good
agreement.

There is, however, no information about the modu-
lation structure from the images taken along the [001]
direction. The modulation structure can be observed
when the electron beam is incident normal to the ¢
axis. According to the calculation shown in_Fig. 4,
where the electron beam is incident along [110], the
weak spots related to the modulation structure are
much stronger than that from the [100] or [010]
incidence. This means that the [110] incidence is the
best orientation to observe the modulation structure.

Fig. 8(a) is a TEM image taken along [110], which
shows the modulation fringes clearly. The spacing
between adjoining fringes, marked by large arrows
in an enlarged image (b), is equal to 1/[c} —c¥|, which
is incommensurate with either ¢, or ¢,. The spacing
of the modulation is not an integral multiple of the
subspacing indicated by the smaller arrows. Even if
we use a longer period, which is obtained as an
integral multiple of the modulation spacing, there is
no integer relationship between the modulation
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spacing and the subspacing. It should be noticed that
the fringes in Fig. 8(a) are not on a straight line, but
shift prominently from the right to the left. At a
constant defocus there are two possible factors to
make the fringe shift. One is a change in crystal
thickness and the other is a change in atom positions.

Using the superlattice mentioned above, a series
of simulated images along [110] are calculated with
an underfocus of 25 nm as the thickness increases
(Fig. 9). The thickness of Fig. 9(a) is 3-4, (b) 4-3,
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Fig. 6. (a) The projection of atoms in an (Sr,.sCa,.5)Cus, 50,
crystal along [001]. The dashed line shows the sublattice L, and
the solid line the sublattice L,. (b) The projection of the crystal
lattice along the a axis. The filled and open circles indicate the
sublattice points of L, and L,, respectively. The dashed line
shows the unit cell of L, and the solid line that of L,. Both
sublattices simultaneously start at level 0 as shown in the figure.
They do not coincide with each other at all along the ¢ direction.









